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An integral equation for the floating-body problem 
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The time-harmonic three-dimensional finite-depth floating-body problem is reformu- 
lated as a boundary integral equation. Using the elementary fundamental solution 
that satisfies the boundary condition on the sea bottom but not the linearized free 
surface condition, the integral equation extends over both the ship hull and the free 
surface. It is shown that this integral equation is free of irregular frequencies, that 
is, it has at most one solution. 

1. Introduction 
In his classic work on the floating body problem, John (1950) showed how the 

boundary-value problem could be reduced to an integral equation over the wetted 
portion of the ship hull. The kernel of his integral operator was the Green function 
for the entire fluid domain with no ship present that satisfied the boundary condition 
at the bottom of fluid (assumed flat) and the linearized free-surface condition on the 
entire fluid-air boundary. John demonstrated the existence of irregular frequencies, 
frequencies for which the integral equation was not uniquely solvable. Recently 
Kleinman (1982) provided two methods of modifying the integral equation so that 
there were no irregular frequencies. In  one case the domain of the integral operator 
was enlarged and in the other the operator itself changed, but both methods employed 
John’s Green function, which is rather complicated, especially in the three-dimensional, 
finite-depth case. 

Another way to treat this problem is to employ a much simpler Green function, 
one that satisfies only the boundary condition at the bottom of the fluid. Since this 
does not satisfy the free-surface condition, we obtain an integral equation defined over 
both the wetted surface of the ship hull and the free surface. Such an integral equation 
has been derived and even solved numerically for certain cases, e.g. Yeung (1975) 
and Bai & Yeung (1974). Numerical evidence indicates that this integral equation 
does not exhibit irregular frequencies but no conclusive analytical argument has yet 
appeared to support this conjecture. 

The present paper provides a proof of the conjecture that this integral equation 
has no irregular frequencies. By irregular frequencies is meant frequencies for which 
the integral equation is not uniquely solvable even though the solution of the 
corresponding boundary-value problem is unique. What we prove is that the integral 
equation obtained using a simple combination of elementary sources is uniquely 
solvable at all frequencies. 

It should be emphasized that our concern here is not with uniqueness for the 
boundary-value problem itself. There John required certain geometric restrictions in 
order to establish uniqueness. These restrictions may be somewhat relaxed to include 
hull forms with corners and non-normal intersections with the free surface (see 
Kleinman 1982). However, in the three-dimensional case treated here, we retain the 
restriction that vertical rays from the free surface may not intersect the ship hull in 
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order that the boundary-value problem be uniquely solvable. Our concern here is with 
integral-equation formulations and the irregular frequencies that are introduced in 
some cases. 

It should be noted that the occurrence of irregular frequencies in integral equation 
formulations of acoustic scattering problems is entirely analogous to the present case. 
(See e.g. Smirnov 1964; Brundrit 1965; Copley 1968; Schenck 1968; Chertok 1970, 
1971 .) However, methods for removing the irregular frequencies in acoustic scattering 
all essentially involve making the kernel of the integral equation more complicated 
(e.g. Brakhage & Werner 1965; Burton & Miller 1971 ; Kleinman & Roach 1974,1982). 
In the present case the irregular frequencies are removed by making the kernel 
simpler but extending the range of integration. 

2. Notation and statement of problem 
Specifically, we treat the three-dimensional floating-body problem with finite depth 

h. If we denote the fluid domain by D,, the hull by C,, the free surface by C ,  and 
the bottom by C,, and if we denote by D- the domain consisting of the upper-half 
space and the interior of the ship hull, then the geometry may be illustrated as in 
figure 1. 

The function 4 solves the floating-body problem if 

V z $ = O  inD,, -- ’4- an v onC,, % = o  an onC,, 

3 + k $ = O  an onC,, 

and provided 4 satisfies a radiation condition. Here a / &  is the normal derivative 
directed into D, and V is a given function. The radiation condition is specified in 
the form 

--ikoq5 = O(p- t )  as p-too,  (2) 34 
aP 

uniformly in 8 and y. This condition may be shown to guarantee that 

( p ,  8) being polar coordinates in the free-surface water plane and k, is the positive 
real root of the transcendental equation 

k = k, tanh k, h. 
Now define the Green function i i 

wherep = (zp,  y p ,  z?), q = (z,, y,, 2,) and q1 = (z,, -2h-y,, z,), and we have oriented 
a rectangular coordinate system so that the plane y = 0 is the water plane and free 
surface while y = - h is the bottom. 

With the Green function defined in (5),  which has a double strength singularity 
on C,, Green’s theorem for solutions of Lsplace’s equation in D, which satisfies the 
radiation condition (2) takes the form 
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with 

n I 

FIQURE 1 

where 3B,(p) denotes the boundary of a ball of radius 6 and having centre at p. 
If 4 satisfies all of the boundary conditions in (1) we obtain the boundary-integral 

where p lies either on C, or C,. The integral on C,  vanishes since both y and 4 satisfy 
a homogeneous Neumann condition and the integral over a large cylinder vanishes 
since y = O(p- l )  and 4 = O(p-i ) ,  the radiation condition ensuring that 4 has 
asymptotic growth given by (3). As explained in the introduction, this equation has 
irregular frequencies if there are certain values of k for which the homogeneous 
equation ( V  = 0) has non-trivial solutions. We prove here that such irregular 
frequencies do not exist. 

3. Uniqueness 
Specifically our central result can be stated as follows : 
THEOREM. If (a)  eiko P 

4 = pf (f(@+O(p-')) WP-+cO, 

for all p E C, U C,, and ( c )  4 is continuow on C, U C, then #(p) = 0. 

Proof. The proof of this theorem depends on the growth of potentials with densities 
satisfying conditions (a) ,  ( b )  and ( c )  of the theorem. Assume that q5 is a function 
satisfying (a), (b) and ( c )  of the theorem and define the functions u+ and u- in D+ 
and D- respectively as 
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As will be seen shortly, an essential ingredient involves the growth of u- for large 
radial distances from the origin. Observe that since y has no singularities when 
q E C ,  U C,, p~ D- and y is a solution of Laplace's equation it follows that 

v2u- = 0, pED-. 

The jump conditions for the double layer defined on C, U C, take the form 

This, together with the continuity of the single layer, implies that 

p s D -  

But + satisfies the homogeneous equation ( b )  hence 

lim u-@)=O. 
P+CO u cr 

p s D -  

However, as established in the Appendix, limr+m u- = 0. Hence the maximum 
principle, which asserts that u- assumes its maximum and minimum values on the 

(14) 
boundary, implies that 

u-=O @ E D - ) .  

(15) 

where alan- indicates the normal derivative from D-. Using the defining equation 
(9) for u-, we find with the usual jump conditions for the single layer 

au- 
an- 

Therefore -- - 0 on Go and C,, 

where 

Note that while existence of the normal derivative of the double layer is not 
guaranteed for a merely continuous density +, once it is established that u- = 0 and 
hence has an ordinary normal derivative, namely zero, the defining equation for u- 
ensures that the normal derivative of the double layer exists in the ordinary sense 
since u- and the single layer have ordinary normal derivatives at all points where a 
unique normal exists. 

Now examine the limiting values of u+ as p approaches C, U C, from D+. Using the 
usual jump conditions we find 
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and, since @ satisfies the integral equation (b), 

u+(P) =-29(P), PECfJUC,. (18) 

Observe that since 9 is assumed to have growth as specified in (a), equation (18) 
ensures that u+(p) has the same growth on C,. 

Now form the normal derivative of u+ from D+, obtaining 

Since the normal derivatives of the double layer with continuous density are the same 
from either side provided one of them exists, we use (16) and (18) to obtain 

- au+ = -2B(P)@@) = 8(P)u+. 

-- au+-o, p € C o ,  

-- a% - -ku+, ~ E C , .  

Also, -- au+-o, P € C ,  

an+ 

With the definition of /3@) (cf. (16)) we see that 

an+ 

and 
an+ 

an+ 

since this property is inherited from y(p,p). Furthermore, by its construction u+ 
satisfies Laplace's equation in D+ and since u+ also satisfies the Neumann condition 
on C,  and the free-surface condition on C,, u+ has the representation, following John 
(19501, m 

(24) 

where k, are the roots of the transcendental equation (4) and a is any number greater 
than the diameter of the ship hull i.e. 

a > max p. 

Recall that ( p ,  8, y) are the cylindrical coordinates of the point p .  Moreover, as shown 
in the Appendix, u+ = O(l/@'), hence 

u+ = C u,(p,0) coshk,(y+h) ( p  = (ze+zZ)i 2 a) ,  
n-0 

PS co 

which implies, with the orthogonality of {coshk,(y+h)} on L,( -h, 0), that 

This in turn implies that 
u,(p, e) = o(~/~i- ' ) .  

Jozn un(p, 0) e-imo dt9 = O(l/p:-'), 

and since the most general form of u,(p, 0 )  is 
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anm Hfk!l(knP) +brim H[;411(knp) = O(l/$-')- (29) 

Here H{gr (2) are Hankel functions of the first and second kind respectively. The fact 
that k, is positive imaginary for n > 0 then ensures that 

b,, = 0 ( n >  0). 
Then 

anm H(') Iml(knp) eime cosh k, h 
m m  

n-o m---03 
u + ( P , ~ , O )  = z z 

and because u+(p,O,O) has the same asymptotic growth as H[2Jk0p) [of. (l8)] 
uniformly in 0 we may conclude that born = 0 which then implies that 

m m  

Hence u+ satisfies the radiation condition for - h  < y < 0. 
Thus u+ is a solution of the homogeneous floating-body problem in D, (cf. (1) and 

(2)) and therefore, provided that C,  satisfies the geometric restrictions of the 
uniqueness proof (John 1950; Kleinman 1982), it  follows that u+ = 0 in D+ and hence 
also on C,  U C,. Equation (20) then ensures that $(p) = 0 on C,  U C,. That is, the only 
solution of the integral equation (b) satisfying (a) and (c) is 4 = 0. This means that 
the integral equation (7) has no irregular frequencies and has at most one solution. 
The existence of this solution for all k will be discussed elsewhere. 

We remark that if the integral equation (8) has a solution q5 on Co U Ci then the 
solution of the inhomogeneous floating-body problem (1) is given by 

This research was sponsored by the Naval Sea Systems Command General 
Hydromechanics Research (GHR) Program administered by the David W. Taylor 
Naval Ship Research Contract N00014-83-K-0060. The authors also wish to acknowl- 
edge many helpful comments by the referees. Particular thanks are due Professor 
R. Kress of Gottingen for his careful analysis and critical observations of an earlier 
draft which occasioned revisions embodied in the present paper. 

Appendix. On the growth of uf 

integral equation. For convenience we restate it as follows : 
Here we prove the Lemma needed in establishing uniqueness of solutions of the 

LEMMA. If (a) 
eiko P 

9 = pt (f(e)+O(p-l))  asp+^, 



Proof. With y as defined in (5 )  it is clear that 

and 

where C, n B, is that portion of the free surface contained in the ball of radius a. It 
is a bit more work to establish the growth of 

where B: is the complement of the ball. Considering first the term involving the 
normal derivative, which on C, is 

a a -- 

we find that 

where ( p ,  8) are the cylindrical coordinates of q on C, and 

R(h)  = ( (x, - x,)~ + (zP - z , ) ~  + ( y ,  + 2h)’)t. 

Introduce two sets of spherical coordinates of the form 

z p  = rp  sin a cos 8, 

x, = T, sina sine, 

y p  = rp  cosa 

z p  = r‘ sin a‘ COB 8, 

xp = r’ sin a‘ sin 8, and 

y,+2h = r’ cosa’ 

where 0 Q 8, Q 2x,  0 Q a Q x ,  0 Q a’ Q !gc, r,, r’ 2 0. Clearly ( rp ,  8,, a) are the usual 
spherical coordinates while r’ and a’ will depend on h. Explicitly, 

r’ = (xL+ zi + ( y ,  + 2h)a)f = (rk + 2hy, + 4hz)f ,  y’ = y ,  + 2h, 
hence rp/r’ Q 1 for 2h8 + hy, 2 0, a condition always satisfied for p E D,  U D-. Note 
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that yp 3 - h when p E D,  U D- hence a' Q i x  whereas a varies over a larger interval, 
in fact, a > when p E D,. In  this notation 

and R(h) = (rf2+p2-2r'p sina' cos (6-6,))4, (A 4) 

aY 1 2n 03 r p  cosa 

Cf n BE 
'('I $ dsq = % 

o a  s '('I ( ( r i  +p2 -2rp (sina cos (6-6,p)) 

r' cos a' 
T" + p2 - 2r'p sin a' cos (6 - B p ) z  

- 

It suffices to consider the first integral on the right, the analysis for the second being 
identical, with r' ,  a', y' replacingr,, a, y,. For brevity we omit the subscript and denote 
r, by T in the ensuing analysis and consider 

(A 6) 
'(Q) P 40 dB for 0 < a < x .  

r cosa JOzn lUm (r2+p2-2rp sina cos(6-6,)): 

Using the asymptotic form of q5 and the substitution p = rt we find 

' (d  P 40 dB 
( r2 + p2 - 2rp sin a cos (6 - O,))! 

r cosa Jo2" jam 
( f ( S )  + O( 1)) t dt dO cOSa 2" 00 eikcort - 

- d I. ja,r d (1 +t2-  2t sina cos (6-6,))3' 

Hence the integral is O ( r f )  for a =# i x .  Note that this expression does not obviously 
exist when a-tix. To see what happens as a+;x observe that 

'(Q) P dP dB 
(r2+p2-2rp sina cos(6-6,))! 

lim r cosa lozn Jam 
a++* 

where 
1 

= - 2x(  (", - X q ) 2  + ( yp - yq)2 + ( z p  - zg)2$ ' 

and the jump condition for a double layer is used. Here we make no use of the 
assumption that # is a solution of the integral equation (b) .  The integral in the jump 
condition vanishes for p on C,, (y, = 0). Now we use (a)  which asserts that on Cf, 
q5 is assumed to grow as O(p-4) which is the desired growth. Hence the integral (A 6) 
is O(r*) for 0 < a < x .  Redoing the analysis with r' ,  a', y' replacing r,, a, yp leads to 
a similar result. Hence we conclude that 

Next we consider 
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Using the notation previously introduced and the asymptotic form of 9 we must treat 
integrals of the form 

and a similar integral with r', a' replacing r ,  a. 
The term involving O( l/p) is easily handled since 

where c is independent of r and a. This is seen to be O ( d )  since the integral on the 
right exists and is independent of r.  

The remaining integral is of the form 

eikop pi t (@)  dp do 

f(0) at eiko a d0 

-L s" Jam eikop d ( Pi )dpdB. ( A i l )  
dp (r2 + p2 - 2rp sin a cos (0 - 0,))i iko 0 

The first term on the right is clearly O(l /r ) .  Hence, on performing the indicated 
differentiation, we have 

and letting p = rt 

We break up the t integration into three parts and use the estimates 

= C l l l f  II,, 
eiko rt( 1 - t 2 )  f(0) dt dB 

and 

eiko rt( 1 - t2))f(@ dt d0 

where 11 - 11 
and f, to obtain 

is the sup norm and the constants c1 and c2 are independent of a, O,, r 
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Letting u = l / t  in the second integral we get 

The integral in (A 12) which we denote as I2 satisfies the inequality 
1 (eiko rt - eiko rlt 

tt(i+t2-2t sina cos(e-ep)): 
1 I eiko rt - eik, r/t (d I eiko rt - eiko r/t (1 -d 

(l-ta)dtdB (A 13) 

for arbitrary SE (0 , l )  (we further restrict 6 subsequently) and using the estimates 

were c is independent of r,  a, 8, and f. 
But for 0 < a < A and 0 < B 2n we may show that 

1 2 2 
i+t2--2ts inacos~‘  i+t2-2tcose G -  ( i - t ) 2 ‘  

hence 

The kernel is weakly singular at t = 1, B = 0 and hence the integral exists. Thus 
there is a constant, c2, such that 

I2 C211fIIoo@Y 

1, = O(@-t). (A 15) 

which with (A 12) establishes that 

We may choose SE (0, 4) to ensure that I, decays with r .  A similar growth estimate 
is obtained if T‘ ,  a‘ replace r ,  a. Hence, with (A 8) we see that 

r 
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This result, taken together with (A 7), ensures that 

which with (A 1)  and (A 2) establishes that 

u* = O(?$-i), 

which implies, for - h < u < 0, that 

171 

(A 17) 

u+ = O(pb,-i). 
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